#Arg(z) = -Arg(z^-1)# for any #zinC, z!=0# How to prove it?

1 Answer
Jun 11, 2017

Please see below.

Explanation:

Let #z=a+ib=rcostheta+irsintheta#

then #|z|=sqrt(a^2+b^2)# and #Arg(z)=tan^(-1)(b/a)#

Let #b/a=tanalpha# then #Argz=alpha#

Note that #z!=0=># that both #a# and #b# cannot be together zero i.e. #a^2+b^2!=0#

As such #z^(-1)=1/(a+ib)=(a-ib)/((a+ib)(a-ib))#

= #(a-ib)/(a^2+b^2)=a/(a^2+b^2)-ib/(a^2+b^2)#

and #Arg(z^(-1))=tan^(-1)((-b/(a^2+b^2))/(a/(a^2+b^2)))=tan^(-1)(-b/a)#

= #tan^(-1)(-tanalpha)#

But as #tan(-alpha)=-tanalpha#

#Arg(z^(-1))=-alpha=-Arg(z)#