Calculate for the first-excited state psi_1(x)ψ1(x) of the simple harmonic oscillator the value of the Heisenberg Uncertainty relation?
psi_1(x) = ((momega)/(piℏ))^(1//4)sqrt((2momega)/ℏ)xe^(-momegax^2//2ℏ)
This was a question on my Physics exam. I know how to do it now, so I plan to post it. :)
This was a question on my Physics exam. I know how to do it now, so I plan to post it. :)
1 Answer
From the fruits of our labor,
DeltaxDeltap = 3ℏ//2
CAUTION: EXTREMELY LONG ANSWER!
First of all, the uncertainty principle is
DeltaxDeltap >= ℏ//2 ,so we ought to get a value
>= ℏ//2 .
Next, the uncertainties are defined as follows:
DeltaA = sqrt(<< A^2 >> - << A >>^2) ," "bb((1)) where
<< A >> is the expectation value, or average value, of the observableA .
An expectation value in one dimension is given by:
<< A >> = << psi | A | psi >> = int_("allspace") psi^"*" hatA psi dx " "bb((2)) where
hatA is the operator corresponding to the observableA .
So, we need to calculate
psi_1(x) = ((momega)/(piℏ))^(1//4)sqrt((2momega)/ℏ)xe^(-momegax^2//2ℏ) ,a real-valued function.
POSITION UNCERTAINTY
We have that
<< x^2 >> = int_(-oo)^(oo) psi^"*" x^2 psi dx
= ((momega)/(piℏ))^(1//2)((2momega)/ℏ)int_(-oo)^(oo) x^4 e^(-momegax^2//ℏ)dx
= 2/(sqrtpi)((momega)/(ℏ))^(3//2)int_(-oo)^(oo) x^4 e^(-momegax^2//ℏ)dx
A nice way to solve this is to start from this one (which is the only one I know of these kinds of integrals):
int_(-oo)^(oo) e^(-momegax^2//ℏ)dx
From Leibniz's integral rule for constant integration bounds (which was not taught in the class, by the way),
d/(dalpha)int_(-oo)^(oo) e^(-alphax^2)dx = int_(-oo)^(oo) (del)/(delalpha)[e^(-alphax^2)]dx
= -int_(-oo)^(oo) x^2e^(-alphax^2)dx
This integral can be evaluated in polar coordinates to be
color(green)(int_(-oo)^(oo) x^2 e^(-momegax^2//ℏ)dx) = -d/(dalpha)[-(pi/alpha)^(1//2)]
= sqrtpi cdot -1/2alpha^(-3//2)
= color(green)((sqrtpi)/(2alpha^(3//2))) " "bb((3))
Following the sequence once more,
d/(dalpha)int_(-oo)^(oo) x^2e^(-alphax^2)dx = int_(-oo)^(oo) (del)/(delalpha)[x^2e^(-alphax^2)]dx
= -int_(-oo)^(oo) x^4e^(-alphax^2)dx
Therefore,
color(green)(int_(-oo)^(oo) x^4e^(-alphax^2)dx) = -d/(dalpha)[(sqrtpi)/(2alpha^(3//2))]
= -(sqrt(pi)/2 cdot -3/2 alpha^(-5//2))
= color(green)((3sqrtpi)/(4alpha^(5//2))) " "bb((4))
And so, using result
color(green)(<< x^2 >>) = 2/(sqrtpi)((momega)/(ℏ))^(3//2)int_(-oo)^(oo) x^4 e^(-momegax^2//ℏ)dx
= 2/(sqrtpi)((momega)/(ℏ))^(3//2) cdot (3sqrtpi)/(4((momega)/(ℏ))^(5//2))
= 2/cancel(sqrtpi)cancel(((momega)/(ℏ))^(3//2)) cdot (3cancel(sqrtpi))/(4((momega)/(ℏ))^(cancel(5//2)))
= color(green)(3/2 (ℏ)/(momega)) " "bb((5))
Next, the average position is:
<< x >> = int_(-oo)^(oo) psi^"*"xpsidx
= 2/(sqrtpi)((momega)/(ℏ))^(3//2)int_(-oo)^(oo) x^3 e^(-momegax^2//ℏ)dx
The integrand is an odd function times an even function, which is then odd. The integral of an odd function over a symmetric interval is zero, so
Therefore, using relation
barul|stackrel(" ")(" "color(green)(Deltax) = sqrt(<< x^2 >> - << x >>^2) = sqrt(<< x^2 >>) = color(green)(sqrt(3/2 (ℏ)/(momega)))" ")| " "bb((6))
MOMENTUM UNCERTAINTY
Similarly, we now need the analogous values for the momentum. The operator for momentum needed, which is
From
<< p^2 >> = -ℏ^2int_(-oo)^(oo) psi^"*"(del^2psi)/(delx^2)dx
The next thing we should evaluate then, is the second derivative of
(del^2psi)/(delx^2) = ((momega)/(piℏ))^(1//4)sqrt((2momega)/ℏ)d^2/(dx^2)[xe^(-momegax^2//2ℏ)]
The derivative of
=> (alpha/pi)^(1//4)sqrt(2alpha) cdot d/(dx)[-alphax^2e^(-alphax^2//2) + e^(-alphax^2//2)]
= (alpha/pi)^(1//4)sqrt(2alpha) cdot [-alpha(-alphax^3e^(-alphax^2//2) + 2xe^(-alphax^2//2)) - alphaxe^(-alphax^2//2)]
= (alpha/pi)^(1//4)sqrt(2alpha) cdot (alpha^2x^2 - 3alpha)xe^(-alphax^2//2)
Let's not put the constants back in yet. Continuing, we got:
(del^2psi)/(delx^2) = (alpha/pi)^(1//4)sqrt(2alpha) cdot (alpha^2x^2 - 3alpha)xe^(-alphax^2//2) " "bb((7))
From this result
<< p^2 >> = -ℏ^2(alpha/pi)^(1//2)(2alpha) int_(-oo)^(oo) xe^(-alphax^2//2) cdot (alpha^2x^2 - 3alpha)e^(-alphax^2//2)dx
= -(2ℏ^2)/sqrtpi alpha^(3//2) int_(-oo)^(oo) (alpha^2x^2 - 3alpha)x^2e^(-alphax^2)dx
= -(2ℏ^2)/sqrtpi alpha^(3//2) {alpha^2int_(-oo)^(oo) x^4e^(-alphax^2)dx - 3alphaint_(-oo)^(oo)x^2e^(-alphax^2)dx}
Fortunately we have basically already done these integrals. From results
= -(2ℏ^2)/sqrtpi alpha^(3//2) {alpha^2((3sqrtpi)/(4alpha^(5//2))) - 3alpha((sqrtpi)/(2alpha^(3//2)))}
= -(2ℏ^2)/sqrtpi alpha^(cancel(3//2)) {((3sqrtpi)/(4cancel(alpha^(1//2)))) - 3((sqrtpi)/(2cancel(alpha^(1//2))))}
= -(2ℏ^2)/cancelsqrtpi alpha (-(3cancelsqrtpi)/4)
= ℏ^2 cdot alpha (3/2)
Recalling that
color(green)(<< p^2 >> = 3/2momegaℏ) " "bb((8))
Last one!! The average momentum from
<< p >> = int_(-oo)^(oo) psi^"*"hatppsidx
where
<< p >> = -iℏ((momega)/(piℏ))^(1//2)((2momega)/ℏ)int_(-oo)^(oo) xe^(-momegax^2//2ℏ) d/dx[xe^(-momegax^2//2ℏ)]dx
But there is a nice trick here. The derivative of
The result is that the integrand is an odd function times an even function, giving another odd function to integrate over a symmetric interval.
So,
barul|stackrel(" ")(" "color(green)(Deltap) = sqrt(<< p^2 >> - << p >>^2) = sqrt(<< p^2 >>) = color(green)(sqrt(3/2 momegaℏ))" ")| " "bb((9))
FINAL RESULT!
FINALLY, we can then evaluate the uncertainty relation! Using results
color(blue)ul(DeltaxDeltap) = sqrt(3/2 ℏ/cancel(momega)) cdot sqrt(3/2 cancel(momega)ℏ)
= color(blue)ul(3ℏ//2)
And this is indeed