Calculate for the first-excited state #psi_1(x)# of the simple harmonic oscillator the value of the Heisenberg Uncertainty relation?
#psi_1(x) = ((momega)/(piℏ))^(1//4)sqrt((2momega)/ℏ)xe^(-momegax^2//2ℏ)#
This was a question on my Physics exam. I know how to do it now, so I plan to post it. :)
This was a question on my Physics exam. I know how to do it now, so I plan to post it. :)
1 Answer
From the fruits of our labor,
#DeltaxDeltap = 3ℏ//2#
CAUTION: EXTREMELY LONG ANSWER!
First of all, the uncertainty principle is
#DeltaxDeltap >= ℏ//2# ,so we ought to get a value
#>= ℏ//2# .
Next, the uncertainties are defined as follows:
#DeltaA = sqrt(<< A^2 >> - << A >>^2)# ,#" "bb((1))# where
#<< A >># is the expectation value, or average value, of the observable#A# .
An expectation value in one dimension is given by:
#<< A >> = << psi | A | psi >> = int_("allspace") psi^"*" hatA psi dx# #" "bb((2))# where
#hatA# is the operator corresponding to the observable#A# .
So, we need to calculate
#psi_1(x) = ((momega)/(piℏ))^(1//4)sqrt((2momega)/ℏ)xe^(-momegax^2//2ℏ)# ,a real-valued function.
POSITION UNCERTAINTY
We have that
#<< x^2 >> = int_(-oo)^(oo) psi^"*" x^2 psi dx#
#= ((momega)/(piℏ))^(1//2)((2momega)/ℏ)int_(-oo)^(oo) x^4 e^(-momegax^2//ℏ)dx#
#= 2/(sqrtpi)((momega)/(ℏ))^(3//2)int_(-oo)^(oo) x^4 e^(-momegax^2//ℏ)dx#
A nice way to solve this is to start from this one (which is the only one I know of these kinds of integrals):
#int_(-oo)^(oo) e^(-momegax^2//ℏ)dx#
From Leibniz's integral rule for constant integration bounds (which was not taught in the class, by the way),
#d/(dalpha)int_(-oo)^(oo) e^(-alphax^2)dx = int_(-oo)^(oo) (del)/(delalpha)[e^(-alphax^2)]dx#
#= -int_(-oo)^(oo) x^2e^(-alphax^2)dx#
This integral can be evaluated in polar coordinates to be
#color(green)(int_(-oo)^(oo) x^2 e^(-momegax^2//ℏ)dx) = -d/(dalpha)[-(pi/alpha)^(1//2)]#
#= sqrtpi cdot -1/2alpha^(-3//2)#
#= color(green)((sqrtpi)/(2alpha^(3//2)))# #" "bb((3))#
Following the sequence once more,
#d/(dalpha)int_(-oo)^(oo) x^2e^(-alphax^2)dx = int_(-oo)^(oo) (del)/(delalpha)[x^2e^(-alphax^2)]dx#
#= -int_(-oo)^(oo) x^4e^(-alphax^2)dx#
Therefore,
#color(green)(int_(-oo)^(oo) x^4e^(-alphax^2)dx) = -d/(dalpha)[(sqrtpi)/(2alpha^(3//2))]#
#= -(sqrt(pi)/2 cdot -3/2 alpha^(-5//2))#
#= color(green)((3sqrtpi)/(4alpha^(5//2)))# #" "bb((4))#
And so, using result
#color(green)(<< x^2 >>) = 2/(sqrtpi)((momega)/(ℏ))^(3//2)int_(-oo)^(oo) x^4 e^(-momegax^2//ℏ)dx#
#= 2/(sqrtpi)((momega)/(ℏ))^(3//2) cdot (3sqrtpi)/(4((momega)/(ℏ))^(5//2))#
#= 2/cancel(sqrtpi)cancel(((momega)/(ℏ))^(3//2)) cdot (3cancel(sqrtpi))/(4((momega)/(ℏ))^(cancel(5//2)))#
#= color(green)(3/2 (ℏ)/(momega))# #" "bb((5))#
Next, the average position is:
#<< x >> = int_(-oo)^(oo) psi^"*"xpsidx#
#= 2/(sqrtpi)((momega)/(ℏ))^(3//2)int_(-oo)^(oo) x^3 e^(-momegax^2//ℏ)dx#
The integrand is an odd function times an even function, which is then odd. The integral of an odd function over a symmetric interval is zero, so
Therefore, using relation
#barul|stackrel(" ")(" "color(green)(Deltax) = sqrt(<< x^2 >> - << x >>^2) = sqrt(<< x^2 >>) = color(green)(sqrt(3/2 (ℏ)/(momega)))" ")|# #" "bb((6))#
MOMENTUM UNCERTAINTY
Similarly, we now need the analogous values for the momentum. The operator for momentum needed, which is
From
#<< p^2 >> = -ℏ^2int_(-oo)^(oo) psi^"*"(del^2psi)/(delx^2)dx#
The next thing we should evaluate then, is the second derivative of
#(del^2psi)/(delx^2) = ((momega)/(piℏ))^(1//4)sqrt((2momega)/ℏ)d^2/(dx^2)[xe^(-momegax^2//2ℏ)]#
The derivative of
#=> (alpha/pi)^(1//4)sqrt(2alpha) cdot d/(dx)[-alphax^2e^(-alphax^2//2) + e^(-alphax^2//2)]#
#= (alpha/pi)^(1//4)sqrt(2alpha) cdot [-alpha(-alphax^3e^(-alphax^2//2) + 2xe^(-alphax^2//2)) - alphaxe^(-alphax^2//2)]#
#= (alpha/pi)^(1//4)sqrt(2alpha) cdot (alpha^2x^2 - 3alpha)xe^(-alphax^2//2)#
Let's not put the constants back in yet. Continuing, we got:
#(del^2psi)/(delx^2) = (alpha/pi)^(1//4)sqrt(2alpha) cdot (alpha^2x^2 - 3alpha)xe^(-alphax^2//2)# #" "bb((7))#
From this result
#<< p^2 >> = -ℏ^2(alpha/pi)^(1//2)(2alpha) int_(-oo)^(oo) xe^(-alphax^2//2) cdot (alpha^2x^2 - 3alpha)e^(-alphax^2//2)dx#
#= -(2ℏ^2)/sqrtpi alpha^(3//2) int_(-oo)^(oo) (alpha^2x^2 - 3alpha)x^2e^(-alphax^2)dx#
#= -(2ℏ^2)/sqrtpi alpha^(3//2) {alpha^2int_(-oo)^(oo) x^4e^(-alphax^2)dx - 3alphaint_(-oo)^(oo)x^2e^(-alphax^2)dx}#
Fortunately we have basically already done these integrals. From results
#= -(2ℏ^2)/sqrtpi alpha^(3//2) {alpha^2((3sqrtpi)/(4alpha^(5//2))) - 3alpha((sqrtpi)/(2alpha^(3//2)))}#
#= -(2ℏ^2)/sqrtpi alpha^(cancel(3//2)) {((3sqrtpi)/(4cancel(alpha^(1//2)))) - 3((sqrtpi)/(2cancel(alpha^(1//2))))}#
#= -(2ℏ^2)/cancelsqrtpi alpha (-(3cancelsqrtpi)/4)#
#= ℏ^2 cdot alpha (3/2)#
Recalling that
#color(green)(<< p^2 >> = 3/2momegaℏ)# #" "bb((8))#
Last one!! The average momentum from
#<< p >> = int_(-oo)^(oo) psi^"*"hatppsidx#
where
#<< p >> = -iℏ((momega)/(piℏ))^(1//2)((2momega)/ℏ)int_(-oo)^(oo) xe^(-momegax^2//2ℏ) d/dx[xe^(-momegax^2//2ℏ)]dx#
But there is a nice trick here. The derivative of
The result is that the integrand is an odd function times an even function, giving another odd function to integrate over a symmetric interval.
So,
#barul|stackrel(" ")(" "color(green)(Deltap) = sqrt(<< p^2 >> - << p >>^2) = sqrt(<< p^2 >>) = color(green)(sqrt(3/2 momegaℏ))" ")|# #" "bb((9))#
FINAL RESULT!
FINALLY, we can then evaluate the uncertainty relation! Using results
#color(blue)ul(DeltaxDeltap) = sqrt(3/2 ℏ/cancel(momega)) cdot sqrt(3/2 cancel(momega)ℏ)#
#= color(blue)ul(3ℏ//2)#
And this is indeed