Can anyone help me on this? Solve sin 2 theta + sin theta - tan theta = 0 for 0 < or = theta = or > 360

1 Answer
May 1, 2018

# theta = 0^circ, 60^circ, 180^circ, 300^circ # and #360^circ# if I'm making out the question correctly.

Explanation:

# sin 2 theta + sin theta - tan theta = 0 #

# 2 sin theta cos theta + sin theta - sin theta / cos theta = 0 #

We can assume #cos theta ne 0#. Let's multiply to clear the fraction.

# 2 sin theta cos^2 theta + sin theta cos theta - sin theta = 0 #

# sin theta ( 2 cos ^2 theta + cos theta - 1 ) = 0#

# sin theta = 0 # or #2 cos ^2 theta + cos theta - 1 = 0#

# theta = 0^circ or 180^circ or 360^circ# from the first one.

# ( 2 cos theta - 1)(cos theta + 1) = 0 #

#cos theta = 1/2 or cos theta = -1 #

The first is trig's go-to triangle. #theta =60^circ or 300^circ#

The second is #theta=180^circ# which we already had.

Check:

#theta =0 quad sin 0 + sin 0 - tan 0 = 0 quad sqrt #

#theta=60^circ quad sin 120+ sin 60-tan60=\sqrt{3}/2+\sqrt{3}/2- \sqrt{3} = 0 quad sqrt #

#theta=180^circ quad sin 360 + sin 180 - tan 180= 0+0-0=0 quad sqrt#

#theta =300^circ quad sin 600 + sin 300 - tan 300 ##= sin(-120)+sin(-60)-tan(-60) ##= (-\sqrt{3}/2) + (-\sqrt{3}/2) - (-\sqrt{3}) = 0 quad sqrt#