Can anyone help me on this? Solve sin 2 theta + sin theta - tan theta = 0 for 0 < or = theta = or > 360

1 Answer
May 1, 2018

theta = 0^circ, 60^circ, 180^circ, 300^circ θ=0,60,180,300 and 360^circ360 if I'm making out the question correctly.

Explanation:

sin 2 theta + sin theta - tan theta = 0 sin2θ+sinθtanθ=0

2 sin theta cos theta + sin theta - sin theta / cos theta = 0 2sinθcosθ+sinθsinθcosθ=0

We can assume cos theta ne 0cosθ0. Let's multiply to clear the fraction.

2 sin theta cos^2 theta + sin theta cos theta - sin theta = 0 2sinθcos2θ+sinθcosθsinθ=0

sin theta ( 2 cos ^2 theta + cos theta - 1 ) = 0sinθ(2cos2θ+cosθ1)=0

sin theta = 0 sinθ=0 or 2 cos ^2 theta + cos theta - 1 = 02cos2θ+cosθ1=0

theta = 0^circ or 180^circ or 360^circθ=0or180or360 from the first one.

( 2 cos theta - 1)(cos theta + 1) = 0 (2cosθ1)(cosθ+1)=0

cos theta = 1/2 or cos theta = -1 cosθ=12orcosθ=1

The first is trig's go-to triangle. theta =60^circ or 300^circθ=60or300

The second is theta=180^circθ=180 which we already had.

Check:

theta =0 quad sin 0 + sin 0 - tan 0 = 0 quad sqrt

theta=60^circ quad sin 120+ sin 60-tan60=\sqrt{3}/2+\sqrt{3}/2- \sqrt{3} = 0 quad sqrt

theta=180^circ quad sin 360 + sin 180 - tan 180= 0+0-0=0 quad sqrt

theta =300^circ quad sin 600 + sin 300 - tan 300 = sin(-120)+sin(-60)-tan(-60) = (-\sqrt{3}/2) + (-\sqrt{3}/2) - (-\sqrt{3}) = 0 quad sqrt