Can anyone help me verify the following identity? cosx/(secx)(sinx)=cscx-sinx

1 Answer
Mar 19, 2017

see explanation.

Explanation:

To verify the identity manipulate the left side into the form of the right side.

#"left side "=cosx/(secxsinx)#

#• secx=1/cosxlarrcolor(red)" trig. identity"#

#rArrcosx/(secxsinx)=cosx/(sinx/cosx)=cosx xxcosx/sinx=cos^2x/sinx#

#• cos^2x=1-sin^2xlarrcolor(red)" trig. identity"#

#rArrcos^2x/sinx=(1-sin^2x)/sinx#

#color(white)(xxxxxxxx)=1/sinx-sin^2x/sinx#

#• 1/sinx=cscxlarrcolor(red)"trig. identity"#

#rArr1/sinx-(cancel(sinx)sinx)/cancel(sinx)#

#=cscx-sinx=" right side"rArr" verified"#