Can anyone help me verify the following identity? cosx/(secx)(sinx)=cscx-sinx
1 Answer
Mar 19, 2017
see explanation.
Explanation:
To verify the identity manipulate the left side into the form of the right side.
"left side "=cosx/(secxsinx)
• secx=1/cosxlarrcolor(red)" trig. identity"
rArrcosx/(secxsinx)=cosx/(sinx/cosx)=cosx xxcosx/sinx=cos^2x/sinx
• cos^2x=1-sin^2xlarrcolor(red)" trig. identity"
rArrcos^2x/sinx=(1-sin^2x)/sinx
color(white)(xxxxxxxx)=1/sinx-sin^2x/sinx
• 1/sinx=cscxlarrcolor(red)"trig. identity"
rArr1/sinx-(cancel(sinx)sinx)/cancel(sinx)
=cscx-sinx=" right side"rArr" verified"