Can anyone help me verify the following identity? cosx/(secx)(sinx)=cscx-sinx

1 Answer
Mar 19, 2017

see explanation.

Explanation:

To verify the identity manipulate the left side into the form of the right side.

"left side "=cosx/(secxsinx)

• secx=1/cosxlarrcolor(red)" trig. identity"

rArrcosx/(secxsinx)=cosx/(sinx/cosx)=cosx xxcosx/sinx=cos^2x/sinx

• cos^2x=1-sin^2xlarrcolor(red)" trig. identity"

rArrcos^2x/sinx=(1-sin^2x)/sinx

color(white)(xxxxxxxx)=1/sinx-sin^2x/sinx

• 1/sinx=cscxlarrcolor(red)"trig. identity"

rArr1/sinx-(cancel(sinx)sinx)/cancel(sinx)

=cscx-sinx=" right side"rArr" verified"