Can anyone help me verify the following identity? cosx/(secx)(sinx)=cscx-sinx
1 Answer
Mar 19, 2017
see explanation.
Explanation:
To verify the identity manipulate the left side into the form of the right side.
#"left side "=cosx/(secxsinx)#
#• secx=1/cosxlarrcolor(red)" trig. identity"#
#rArrcosx/(secxsinx)=cosx/(sinx/cosx)=cosx xxcosx/sinx=cos^2x/sinx#
#• cos^2x=1-sin^2xlarrcolor(red)" trig. identity"#
#rArrcos^2x/sinx=(1-sin^2x)/sinx#
#color(white)(xxxxxxxx)=1/sinx-sin^2x/sinx#
#• 1/sinx=cscxlarrcolor(red)"trig. identity"#
#rArr1/sinx-(cancel(sinx)sinx)/cancel(sinx)#
#=cscx-sinx=" right side"rArr" verified"#