Can you prove that 1^2+2^2+3^2+...+n^2=1/6n(n+1)(2n+1)?

2 Answers
Jun 27, 2017

"see explanation"

Explanation:

"using the method of "color(blue)"proof by induction"

"this involves the following steps "

• " prove true for some value, say n = 1"

• " assume the result is true for n = k"

• " prove true for n = k + 1"

n=1toLHS=1^2=1

"and RHS " =1/6(1+1)(2+1)=1

rArrcolor(red)"result is true for n = 1"

"assume result is true for n = k"

color(magenta)"assume " 1^2+2^2+ .... +k^2=1/6k(k+1)(2k+1)

"prove true for n = k + 1"

1^2+2^2+..+k^2+(k+1)^2=1/6k(k+1)(2k+1)+(k+1)^2

=1/6(k+1)[k(2k+1)+6(k+1)]

=1/6(k+1)(2k^2+7k+6)

=1/6(k+1)(k+2)(2k+3)

=1/6n(n+1)(2n+1)to" with " n=k+1

rArrcolor(red)"result is true for n = k + 1"

rArr1^2+2^2+3^2+....+n^2=1/6n(n+1)(2n+1)

Jun 27, 2017

Refer to the Proof given in the Explanation.

Explanation:

Let, S_n=1^2+2^2+3^2+...+n^2, &, , f(n)=n^3, n in NNuu{0}.

:. f(n)-f(n-1)=n^3-(n-1)^3.

because, a^3-b^3=(a-b)(a^2+ab+b^2), f(n)-f(n-1),

={n-(n-1)}{n^2+n(n-1)+(n-1)^2},

=(1)(n^2+n^2-n+n^2-2n+1),

rArr f(n)-f(n-1)=n^3-(n-1)^3=3n^2-3n+1;(n in NNuu{0}.

n=1 rArr 1^3-0^3=3(1)^2-3(1)+1;
n=2 rArr 2^3-1^3=3(2)^2-3(2)+1;
n=3 rArr 3^3-2^3=3(2)^2-3(2)+1;
vdots vdots vdots vdots vdots vdots vdots vdots vdots vdots
n=n rArr n^3-(n-1)^3=3(n)^2-3(n)+1;

"Adding, "n^3-0^3=3{1^2+2^2+3^2+...+n^2}-3{1+2+3+...+n}+n,

:. n^3=3S_n-3Sigman+n, or,

n^3=3S_n-3/2n(n+1)+n, i.e.,

2n^3=6S_n-3n(n+1)+2n=6S_n-3n^2-3n+2n,

:. 2n^3+3n^2+n=6S_n,

:. 6S_n=n(2n^2+3n+1)=n(n+1)(2n+1),

rArr S_n=n/6(n+1)(2n+1).

Enjoy Maths.!