Can you walk through the steps for balancing "Cr"_2"O"_7^(2-) + "SO"_3^(2-) + "H"^+ → "Cr"^(3+) + "SO"_4^(2-) + "H"_2"O"?

1 Answer
Oct 22, 2015

Here are the detailed steps.

Explanation:

Your equation is

"Cr"_2"O"_7^(2-) + "SO"_3^(2-) + "H"^+ → "Cr"^(3+) + "SO"_4^(2-) + "H"_2"O"

1. Identify the oxidation number of every atom.

Left hand side: "Cr = +6"; "O = -2"; "S = +4"; "H = +1"
Right hand side: "Cr = +3"; "S = +6"; "O = -2"; "H = +1"

2. Determine the change in oxidation number for each atom that changes.

"Cr: +6 → +3"; Change = -3
"S: +4 → +6"; Change = +2

3. Make the total increase in oxidation number equal to the total decrease in oxidation number.

We need 2 atoms of "Cr" for every 3 atoms of "S". This gives us total changes of -6 and +6.

4. Put the appropriate coefficients in front of the formulas containing those atoms.

color(red)(1)"Cr"_2"O"_7^(2-) + color(red)(3)"SO"_3^(2-) + "H"^+ → color(red)(2)"Cr"^(3+) + color(red)(3)"SO"_4^(2-) + "H"_2"O"

5. Balance all remaining atoms other than "H" and "O".

Done.

6. Balance O.

We have fixed 16 atoms of "O" on the left, so we need 16 atoms of "O" on the right.

And we have fixed 12 atoms of "O" on the right, so we need 4 more.

Put a color(blue)(4) in front of the "H"_2"O".

color(red)(1)"Cr"_2"O"_7^(2-) + color(red)(3)"SO"_3^(2-) + "H"^+ → color(red)(2)"Cr"^(3+) + color(red)(3)"SO"_4^(2-) + color(blue)(4)"H"_2"O"

7. Balance H.

We have fixed 8 atoms of "H" on the right, so we need 8 on the left.

Put an color(green)(8) in front of the "H"^+.

color(red)(1)"Cr"_2"O"_7^(2-) + color(red)(3)"SO"_3^(2-) + color(green)(8)"H"^+ → color(red)(2)"Cr"^(3+) + color(red)(3)"SO"_4^(2-) + color(blue)(4)"H"_2"O"

8. Check that everything is balanced.

(a) Atoms

On the left: "2Cr; 16 O; 3 S; 8 H"
On the right:"2Cr; 3 S; 16 O; 8 H"

(b) Charge

On the left: 0
On the right: 0

Everything checks!

The final balanced equation is

"Cr"_2"O"_7^(2-) + 3"SO"_3^(2-) + 8"H"^+ → 2"Cr"^(3+) + 3"SO"_4^(2-) + 4"H"_2"O"