Can you write #(a+b)^0.5 - (a-b)^0.5# as the square root of a difference?
2 Answers
Explanation:
If
#(sqrt(a+b)-sqrt(a-b))^2 = (sqrt(a+b))^2-2sqrt(a+b)sqrt(a-b)+(sqrt(a-b))^2#
#color(white)((sqrt(a+b)-sqrt(a-b))^2) = (a+b)-2sqrt(a+b)sqrt(a-b)+(a-b)#
#color(white)((sqrt(a+b)-sqrt(a-b))^2) = 2a-2sqrt((a+b)(a-b))#
#color(white)((sqrt(a+b)-sqrt(a-b))^2) = 2a-2sqrt(a^2-b^2)#
So yes,
#(a+b)^0.5-(a-b)^0.5 = sqrt(2a-2sqrt(a^2-b^2))#
Explanation:
squaring both sides