Given
#sin(A+B)=sinAcosB+cosAsinB....[1]#
#cos(A+B)=cosAcosB-sinAsinB....[2]#
So #tan(A+B)=sin(A+B)/cos(A+B)#
#=((sinAcosB)/(cosAcosB)+(cosAsinB)/(cosAcosB))/((cosAcosB)/(cosAcosB)-(sinAsinB)/(cosAcosB))#
#=>tan(A+B)=(tanA+tanB)/(1-tanAtanB).....[3]#
#=>tan(A+B)=(tanA/tanA+tanB/tanA)/(1/tanA-tanB)#
#=>tan(A+B)=(1+tanB*cotA)/(cotA-tanB).....[4]#
This is an identity so it is valid for real values of #A and B#.So putting #A=90^@ and B= theta # in [4] we get
#=>tan(90^@+theta)=(1+tantheta*cot90)/(cot90-tantheta)#
#=>tan(90^@+theta)=(1+tantheta*0)/(0-tantheta)=-1/tantheta#
#=>tan(90^@+theta)=-1/tantheta....[5]#
Now if #y=mx# straight line makes angle #theta# with positive direction of x-axis then #m=theta#.Again if the straight line having equation #y=m_1x# makes an angle #90^@+theta# with the positive direction of x-axis,then it will be perpendicular to the first straight line and its slope m_1=tan(90^@+theta#
So by relation [5] we get
#m_1=-1/m#
#mm_1=-1#, for mutually perpendicular straight lines