Consider the surface xyz=30. How do you find the unit normal vector to the surface at (2,5,3)?

1 Answer
Dec 29, 2016

ˆn=119(15ˆi+6ˆj+10ˆk)

Explanation:

xyz=30

write as

f(x,y,z)=xyz30=0

vector normal to f(x) is given by f(x,y,z)

f(x,y,z)=(ˆix+ˆjy+ˆkz)(xyz30)

f(x,y,z)=yzˆi+xzˆj+xyˆk

f(2,5,3)=(5×3)ˆi+(2×3)ˆj+(2×5)ˆk

f(2,5,3)=15ˆi+6ˆj+10ˆk

call this normal vector n

unit vector in this direction is given by

ˆn=nn

n=152+62+102=19

ˆn=119(15ˆi+6ˆj+10ˆk)