cos^2(2x)+sin^2(2x)=? what value is this equal to?

1 Answer
Jun 12, 2018

cos^2(2x)+sin^2(2x)=1

Explanation:

Remember the equation cos^2x+sin^2x=1?
Well the x refers to any number so if your number is 2x, then cos^2 2x+sin^2 2x=1

You can also prove this by using the double angle formula

cos^2(2x)+sin^2(2x)

=(cos^2x-sin^2x)^2+(2sinxcosx)^2

=cos^4x-2sin^2xcos^2x+sin^4x+4sin^2xcos^2x

=cos^4x+2sin^2xcos^2x+sin^4x

=(cos^2x+sin^2x)^2

=1^2

=1