Cot x/2=-k then tan x=?

2 Answers
May 20, 2018

color(maroon)(tan x = (2k)/((1+k)(1-k))tanx=2k(1+k)(1k)

Explanation:

cot (x/2) = -k, tan x = ?cot(x2)=k,tanx=?

tan (x/2) = -(1/k)tan(x2)=(1k)

color(green)(tan x = (2 tan(x/2)) / (1 - tan^2 (x/2))tanx=2tan(x2)1tan2(x2), identity

Substituting for tan (x/2) = -1/ktan(x2)=1k,

tan x = (-2/k) / (1-(-1/k)^2)tanx=2k1(1k)2

tan x = (2/k) / ((1/k^2) - 1)tanx=2k(1k2)1

tan x = (2/k) / ((1-k^2)/k^2)tanx=2k1k2k2

color(maroon)(tan x = (2k)/((1+k)(1-k))tanx=2k(1+k)(1k)

May 20, 2018

tanx=(-2k)/(k^2-1)tanx=2kk21

Explanation:

We know that,

color(blue)(tantheta=(2tan(theta/2))/(1-tan^2(theta/2))...to(1) [half angle formula]
Now,given that,

cot(x/2)=-k=>tan(x/2)=-1/k...to(2)

Using (1)

tanx=(2tan(x/2))/(1-tan^2(x/2)

=>tanx=(2(-1/k))/(1-(-1/k)^2)...toApply(2)

=>tanx=(-2/k)/(1-1/(k^2))

=>tanx=(-2/k)/((k^2-1)/k^2)

=>tanx=(-2k)/(k^2-1)