Could you derive the rate law for two competing first order reactions and the formula for the product ratio, please?

1 Answer
Feb 10, 2016

The rate law is "rate" = -(k_1+ k_2)["A"]

Explanation:

The problem

"A" stackrelcolor(blue)(k_1color(white)(m))(→) "B"

"A" stackrelcolor(blue)(k_2color(white)(m))(→) "C"

Derive the overall rate law and the relative amounts of "B" and "C".

The differential rate law

(d["B"])/dt = k_1["A"]

(d["C"])/dt = k_2["A"]

-(d["A"])/dt = k_1["A"] + k_2["A"] = (k_1 + k_2)["A"]

Let k_3 = k_1 +k_2

Then

"rate" = -(d["A"])/dt = k_3["A"]

Integrated rate law for ["A"]

(d["A"])/dt = -k_3["A"]

(d["A"])/"[A]" = -k_3dt

int_("A₀")^"A" (d["A"])/"[A]" = -int_0^tk_3dt

ln["A"]_"A₀"^"A" = -k_3t]_0^t

ln["A"] – ln["A"]_0 = -k_3t

ln"[A]/"[A]"_0 = -k_3t

"[A]"/["A"]_0 = e^(-k_3t)

["A"] = ["A"_0]e^(-k_3t)

Integrated rate law for ["B"]

(d["B"])/dt = k_1["A"] = k_1["A"]_0e^(-k_3t)

int_0^"B" d["B"] = int_0^t k_1["A"]_0e^(-k_3t)dt

["B"] = k_1/k_3["A"]_0e^(-k_3t)]_0^t = -k_1/k_3["A"]_0(e^(-k_3t) –e^0) = -k_1/k_3["A"]_0(e^(-k_3t) –1)

["B"] = k_1/k_3["A"]_0(1 -e^(-k_3t))

Integrated rate law for C

Similarly,

["C"] = k_2/k_3["A"]_0(1 -e^(-k_3t))

Product ratio

["B"] = k_1/k_3["A"]_0(1 -e^(-k_3t))

["C"] = k_2/k_3["A"]_0(1 -e^(-k_3t))

"[B]"/"[C]" = (k_1/color(red)(cancel(color(black)(k_3)))color(red)(cancel(color(black)(["A"]_0(1 -e^(-k_3t))))))/ (k_2/color(red)(cancel(color(black)(k_3)))color(red)(cancel(color(black)(["A"]_0(1 -e^(-k_3t))))))

"[B]"/"[C]" = k_1/k_2