Derivation and application of reduction formula?

  1. "Use integration by parts to derive the reduction formula cosn(x)dx=1nsinxcosn1(x)+n1ncosn2(x)dx, where n is a positive integer."
    I assume that I need to split this into cosxcosn1x or something to get a valid IBP process?

  2. Use the previous reduction formula or integration by parts to evaluate: cos3dx
    (Where is the x in this problem??)

1 Answer
Apr 9, 2018

Write the integrand as:

cosnx=cosn1xcosx=cosn1xd(sinx)

then we can integrate by parts:

cosnxdx=cosn1xsinxsinxd(cosn1x)

cosnxdx=cosn1xsinx(n1)sinxcosn2x(sinx)dx

cosnxdx=cosn1xsinx+(n1)sin2xcosn2xdx

Now use: sin2x=1cos2x:

cosnxdx=cosn1xsinx+(n1)(1cos2x)cosn2xdx

and using the linearity of the integral:

cosnxdx=cosn1xsinx+(n1)cosn2xdx(n1)cosnxdx

The integral:

In=cosnxdx

appears now on both sides of the equation and we can solve for it:

In=cosn1xsinx+(n1)In2(n1)In

nIn=cosn1xsinx+(n1)In2

In=cosn1xsinxn+n1nIn2

which proves the reduction formula.

For n=3 in particular we have:

cos3xdx=cos2xsinx3+23cosxdx

cos3xdx=cos2xsinx+2sinx3+C

and simplifying:

cos3xdx=(1sin2x)sinx+2sinx3+C

cos3xdx=3sinxsin3x3+C

cos3xdx=sinxsin3x3+C