Determine a function hh such that d/(dx) [sqrt(h(x))]=(3x^2)/(2sqrt(x^3+4))ddx[h(x)]=3x22x3+4?

2 Answers
Mar 18, 2017

h(x) = sqrt( (sqrt( x^3 + 4) + C )^2 )h(x)=(x3+4+C)2

Explanation:

If:

d/(dx) [sqrt(h(x))]=(3x^2)/(2sqrt(x^3+4))ddx[h(x)]=3x22x3+4

Then:

int \ d/(dx) [sqrt(h(x))] \ dx =int \ (3x^2)/(2sqrt(x^3+4)) \ dx

implies sqrt(h(x)) =int \ (3x^2)/(2sqrt(x^3+4)) \ dx

For:

int \ (3x^2)/(2sqrt(x^3+4)) \ dx

We say that: z = x^3 + 4, dz = 3x^2 dx

implies int \ (3x^2)/(2sqrt(z)) \ (dz)/(3x^2)

= 1/2 int \ (dz)/(sqrt(z)) \

= sqrt z + C

= sqrt( x^3 + 4) + C color(red)(= sqrt(h(x))

So

h(x) = sqrt( (sqrt( x^3 + 4) + C )^2 )

Mar 18, 2017

h(x) = x^3+4

Explanation:

d/dx (sqrt(h(x))) = 1/2(h(x))^(-1/2) d/dx(h(x)) = (h'(x))/(2sqrt(h(x))

If h(x) = x^3+4 then h'(x) = 3x^2

d/dx (sqrt(x^3+4)) = 1/2(x^3+4)^(-1/2)(3x^2) = (3x^2)/(2 sqrt(x^3+4))

So h(x) = x^3+4