Determine the length AB in the figure below without using Cosine and Sine formulas?

enter image source here

1 Answer
Feb 24, 2018

enter image source here

To determine the length of AB without using trigonometry let us imagine C as the origin and the given line through C as X-axis .

Perpendiculars AM and BN are drawn on X-axis .
#angle DMC=angle DCM=pi/6# is drawn.

Now #DeltaAMD# becomes equilateral and #Delta DMC# is isosceles. So #AM=AD=DM=OD=1/2AB=500'#

Now #OM=sqrt(AO^2-AM^2)=500sqrt3#

So coordinates of #A->(-500sqrt3,500)#

Now in #Delta BON, angle BON=pi/4and angle BNO=pi/2#

So #ON=BN#

Hence #2BN^2=500^2#

#=>BN=500/sqrt2#

Hence coordinates of #B->(500/sqrt2,500/sqrt2)#

So length of AB

#=sqrt((500/sqrt2+500sqrt3)^2+(500-500/sqrt2)^2)#

#=500sqrt((1/2+3+sqrt6+1+1/2-sqrt2)#

#=500sqrt(5+sqrt6-sqrt2)~~1228.34'#