Determine the points on the curve 5x² + 6xy +5y² =8 where the tangent is parallel to the line x-y= 1?

1 Answer
Sep 27, 2015

#(x, y)=(-sqrt2, sqrt2) , (sqrt2, -sqrt2)#

Explanation:

#x-y=1=># write in slope-intercept form:
#y=x-1=># slope = 1
#5x^2+ 6xy +5y^2 =8=># implicit differentiation:
#10x+6y+6xy'+10yy'=0#
#y'(3x+5y)=-(5x+3y)#
#y'=-(5x+3y)/(3x+5y)=># the slope of the curve, equate to 1:
#-(5x+3y)/(3x+5y)=1=># solve for #y# in terms of #x#:
#3x+5y=-5x-3y#
#8x+8y=0#
#x+y=0#
#y=-x=># substitute in the equation of the curve, solve for #x#:
#5x^2+6x*(-x)+5*(-x)^2=8#
#5x^2-6x^2+5x^2=8#
#4x^2=8#
#x^2=2#
#x=-sqrt2 , sqrt2=># solve for #y:#
#y=sqrt2 , -sqrt2#
hence the required points are:
#(x, y)=(-sqrt2, sqrt2) , (sqrt2, -sqrt2)#