Determine the values of #a# and #b#?

The equations #x^3+x^2+ax+b=0# and #x^3-bx^2-ax+4=0# both have #x=2# as a solution

2 Answers
Nov 15, 2017

#a=-10, b=8#

Explanation:

#x^3+x^2+ax+b=0#

has solution #x=2#

#=>2^3+2^2+2a+b=0#

#:.12+2a+b=0--(1)#

#x^3-bx^2-ax+4=0#

has solution #x=2#

#=>2^3-bxx2^2-2a+4=0#

#12-2a-4b=0--(2)#

#12+2a+b=0--(1)#

#(1)+(2)#

#24-3b=0#

#=>b=8#

sub into#(1)#

#12+2a+8=0#

#=>a=-10#

check in #(2)#

#12- 2xx-10 +8=12-20+8=0sqrt#

Nov 15, 2017

#a=-10" and "b=8#

Explanation:

#"since x = 2 is a solution to both equations we can"#
#"substitute this value directly into the equations"#

#rArr2^3+2^2+2a+b=0" and "#

#2^3-2^2b-2a+4=0#

#"simplifying to give"#

#8+4+2a+b=0rArr2a+b=-12to(1)#

#8-4b-2a+4=0rArr-2a-4b=-12to(2)#

#"adding equations "(1)" and "(2)" to eliminate a"#

#(2a-2a)+(b-4b)=-12+(-12)#

#rArr-3b=-24rArrb=8#

#"substitute this value in equation "(1)#

#2a+8=-12rArr2a=-20rArra=-10#

#rArra=-10" and "b=8#