Evalute #lim_(x->oo) [sqrt(x^2+x+2) - sqrt(x^2-3x-5)]#?

2 Answers
May 10, 2017

#lim_(x->oo) sqrt(x^2+x+2) - sqrt(x^2-3x-5)#

#= lim_(x->oo) x ( sqrt(1+1/x+2/x^2) - sqrt(1-3/x-5/x^2))#

This next bit is an algebraic shortcut as the #1/x^2# terms seem to disappear, but those terms are going to be order of magnitudes smaller. We could do a full expansion but that would look quite messy. So, from there:

#= lim_(x->oo) x ( sqrt(1+1/x) - sqrt(1-3/x))#

By the binomial series expansion, #(1+ z)^alpha = 1 + alpha z + O(z^2)#:

#= lim_(x->oo) x ( (1+1/(2x) + O(1/x^2)) - (1-3/(2x) + O(1/x^2) )#

#= lim_(x->oo) x * (1/(2x) + 3/(2x)) = 2#

May 10, 2017

2

Explanation:

#lim_(x->oo) [sqrt(x^2+x+2) - sqrt(x^2-3x-5)]#
#lim_(x->oo) [{(sqrt(x^2+x+2) - sqrt(x^2-3x-5))(sqrt(x^2+x+2) + sqrt(x^2-3x-5))}/(sqrt(x^2+x+2) + sqrt(x^2-3x-5))]#
#lim_(x->oo) [(sqrt(x^2+x+2))^2 - (sqrt(x^2-3x-5))^2]/(sqrt(x^2+x+2) + sqrt(x^2-3x-5))#
#lim_(x->oo) [{(x^2+x+2-x^2+3x+5)}/(sqrt(x^2+x+2) + sqrt(x^2-3x-5))]#
#lim_(x->oo) [(4x+7)/(sqrt(x^2+x+2) + sqrt(x^2-3x-5))]#
#lim_(x->oo) [{(4x+7)/x}/{(sqrt(x^2+x+2) + sqrt(x^2-3x-5))/x}]#
#lim_(x->oo) [{4+(7/x)}/{(sqrt(1+1/x+2/x^2))+(sqrt(1-3/x-5/x^2))}]#

As we know:
#(lim_(x->oo)1/x = 0) and (lim_(x->oo)1/x^2 = 0)#

Therefore:
#= [(4+0)/(sqrt(1+0+0)+sqrt(1-0-0))]#
#= [4/2]#
#= 2#