Ex with lim: #lim_(x->4) ((sqrt(2x-7)-1)/(sqrt(x-3)-1))# ?
1 Answer
Nov 23, 2017
The limit equals
Explanation:
We have using L'hospitals:
#L = lim_(x->4) (2/(2sqrt(2x - 7)))/(1/(2sqrt(x - 3))#
#L = lim_(x->4) 2(sqrt(x - 3)/(sqrt(2x - 7)))#
We can now evaluate:
#L = 2(sqrt(4 - 3))/sqrt(2(4) - 7)#
#L = 2#
We confirm graphically:
Hopefully this helps!