Express f(x) = (3x)/ [(1 +x)(1+2x^2)] in partial fractions?

let f(x) = (3x)/ [(1 +x)(1+2x^2)]
(i) Express f(x) in partial fractions.
(ii) Hence obtain the expansion of f(x) in ascending powers of x, up to and including the term in x^3

2 Answers
Jul 25, 2018

The partial fraction is f(x)=(-1)/(1+x)+(2x+1)/(1+2x^2). The expansion is =3(x-x^2-x^3)+o(x^3)

Explanation:

Perform the decomposition into partial fractions

(3x)/((1+x)(1+2x^2))=A/(1+x)+(Bx+C)/(1+2x^2)

=(A(1+2x^2)+(Bx+C)(1+x))/((1+x)(1+2x^2))

The denominators are the same, compare the numerators

3x=A(1+2x^2)+(Bx+C)(1+x)

Let x=0, =>, 0=A+C

Let x=-1, =>, -3=3A, =>, A=-1

=>, C=-A=1

Coefficients of x^2

0=2A+B, =>, B=-2A=2

Therefore,

(3x)/((1+x)(1+2x^2))=(-1)/(1+x)+(2x+1)/(1+2x^2)

The Taylor expansions are

-1/(1+x)=-1+x-x^2+x^3 + o(x^3)

(2x+1)/(1+2x^2)=1+2x-2x^2-4x^3+o(x^3)

You can also obtain theses expansions by performing a long division

Therefore,

f(x)=-1/(1+x)+(2x+1)/(1+2x^2)=0+3x-3x^2-3x^3+o(x^3)

{3x}/{(1+x)(1+2x^2)}=\frac{-1}{1+x}+\frac{2x+1}{1+2x^2}

Explanation:

Let

{3x}/{(1+x)(1+2x^2)}=\frac{A}{1+x}+\frac{Bx+C}{1+2x^2}

3x=(2A+B)x^2+(B+C)x+(A+C)

Comparing the corresponding coefficients on both the sides, we get

2A+B=0 \ ......(1)

B+C=3\ ............(2)

A+C=0\ .......(3)

Subtracting (2) from (3), we get

A-B=-3\ ......(4)

Adding (1) & (4) we get

2A+B+A-B=0-3

3A=-3

A=-1

setting A=-1 in (4), we get

-1-B=-3

B=2

Setting A=-1 in (3), we get

-1+C=0

C=1

Now, setting the values of A, B, C, we get following partial fractions

{3x}/{(1+x)(1+2x^2)}=\frac{-1}{1+x}+\frac{2x+1}{1+2x^2}