f(x)= (x+1)/(2x-1) =>f(2x)= ? result f(2x)=(4f(x)+1)/(2f(x)+5) but how find it ?

f(x)= (x+1)/(2x-1) =>f(2x)= ?

f(2x)=(4f(x)+1)/(2f(x)+5)
but how find it ?

1 Answer
Mar 7, 2018

f(x)=(x+1)/(2x-1).

To find, f(2x), let, 2x=t. Then,

"Reqd. Value="f(2x)=f(t),

=(t+1)/(2t-1),

=(2x+1)/{2(2x)-1}............[because, t=2x].

rArr "Reqd. Value="f(2x)=(2x+1)/(4x-1)............(star).

Next, f(x)=(x+1)/(2x-1),

rArr 4f(x)+1=4{(x+1)/(2x-1)}+1,

={(4x+4)+(2x-1)}/(4x-1),

:. 4f(x)+1=(6x+3)/(2x-1).............(star1).

Also, 2f(x)+5=2{(x+1)/(2x-1)}+5,

={(2x+2)+5(2x-1)}/(2x-1),

rArr 2f(x)+5=(12x-3)/(2x-1).............(star2).

"Therefore, "(star1) and (star2) rArr (4f(x)+1)/(2f(x)+5),

=(6x+3)/(12x-3)={3(2x+1)}/{3(4x-1)}.

:. f(2x)=(2x+1)/(4x-1)=(4f(x)+1)/(2f(x)+5).