Factor each of the following as completely as possible over the reals?
a) a3(c−b)+b3(a−c)+c3(b−a)
b) a4(c−b)+b4(a−c)+c4(b−a)
Ans
a) a3(c−b)+b3(a−c)+c3(b−a)
=a3(c−b)+b3a−b3c+c3b−c3a
=a3(c−b)−c3a+b3a+c3b−b3c
=a3(c−b)−a(c3−b3)+bc(c2−b2)
=a3(c−b)−a(c−b)(c2+cb+b2)+bc(c2−b2)
=(c−b)(a3−a(c2+cb+b2)+bc(c+b))
=(c−b)(a3−ac2−acb−ab2+bc2+b2c)
=(c−b)(a3−ac2−acb+bc2−ab2+b2c)
=(c−b)(a(a2−c2)−cb(a−c)−b2(a−c))
=(c−b)(a−c)(a(a+c)−cb−b2)
=(c−b)(a−c)(a2+ac−cb−b2)
=(c−b)(a−c)(a2−b2+ac−cb)
=(c−b)(a−c)((a−b)(a+b)+c(a−b))
=(c−b)(a−c)(a−b)(a+b+c)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
b) a4(c−b)+b4(a−c)+c4(b−a)
=a4(c−b)+b4a−b4c+c4b−c4a
=a4(c−b)−c4a+b4a+c4b−b4c
=a4(c−b)−a(c4−b4)+bc(c3−b3)
=a4(c−b)−a(c−b)(c+b)(c2+b2)+bc(c−b)(c2+cb+b2)
=(c−b)(a4−a(c+b)(c2+b2)+bc(c2+cb+b2))
=(c−b)(a4−ac3−abc2−ab2c−ab3+bc3+c2b2+b3c)
=(c−b)(a4−ac3−abc2+bc3−ab2c+c2b2−ab3+b3c)
=(c−b)(a(a3−c3)−bc2(a−c)−b2c(a−c)−b3(a−c))
=(c−b)(a−c)(a(a2+ac+c2)−bc2−b2c−b3)
=(c−b)(a−c)(a3+a2c+ac2−bc2−b2c−b3)
=(c−b)(a−c)(a3−b3+a2c−b2c+ac2−bc2)
=(c−b)(a−c)((a−b)(a2+ab+b2)+c(a2−b2)+c2(a−b))
=(c−b)(a−c)(a−b)(a2+ab+b2+ca+cb+c2)