P(2x^2)=(P(2x^3+x))/(P(x))P(2x2)=P(2x3+x)P(x) is an even function so
a)a) P(2x^3+x)P(2x3+x) and P(x)P(x) are odd functions
b)b) P(2x^3+x)P(2x3+x) and P(x)P(x) are even functions
We have also
P(0)P(0)=P(0)P(0)P(0)=P(0) so
P(0)=0P(0)=0 or P(0)=1P(0)=1
If P(0)=0P(0)=0 then P(x)P(x) must be odd or even. If P(x)P(x) is even
let a_(2n)x^(2n)a2nx2n the minimum xx power in it's composition.
Then for that term,
(P_b(x)+a_(2n)x^(2n))(P_b(2x^2)+a_(2n)(2x^2)^(2n))=P_b(2x^3+x)+a_(2n)(2x^3+x)^(2n)(Pb(x)+a2nx2n)(Pb(2x2)+a2n(2x2)2n)=Pb(2x3+x)+a2n(2x3+x)2n
considering the lower order powers to the left and to the rigth
a_(2n)x^(2n)a_(2n)(2x^2)^(2n)=a_(2n)(2x^3)^(2n)+cdots+a_(2n)x^(2n)a2nx2na2n(2x2)2n=a2n(2x3)2n+⋯+a2nx2n which implies
a_(2n)=0a2n=0
In the same line of reasoning for the case P(0)=0P(0)=0 and P(x)P(x) odd, we can prove that P(x)P(x) such that P(0)=0P(0)=0 cannot be also odd. So
P(0)=1P(0)=1 and P(x)P(x) is even, then
P_n(x)=1+sum_(k=1)^na_(2n)x^(2n)Pn(x)=1+n∑k=1a2nx2n
Now taking P_1(x) = 1+a_2x^2P1(x)=1+a2x2 we have
(1+a_2x^2)(1+a_2(2x^2)^2)=1+a_2(2x^3+x)^2(1+a2x2)(1+a2(2x2)2)=1+a2(2x3+x)2
This equality is verified for a_2=1a2=1 so
P_1(x) = 1 + x^2P1(x)=1+x2
now considering
P_2(x)=1+a_2x^2+a_4x^4P2(x)=1+a2x2+a4x4
after
P_2(x)P_2(2x^2)=P_2(2x^3+x)P2(x)P2(2x2)=P2(2x3+x)
solving for a_2, a_4a2,a4 we obtain
P_2(x) = 1 + 2x^2+x^4 = P_1(x)^2P2(x)=1+2x2+x4=P1(x)2
Finally we can verify that making
P_n(x)=(1+x^2)^nPn(x)=(1+x2)n
then it is true
P_n(x)P_n(2x^2)=P_n(2x^3+x)Pn(x)Pn(2x2)=Pn(2x3+x)
which is equivalent to
(1+x^2)^n(1+4x^4)^n=(1+x^2(2x^2+1)^2)^n(1+x2)n(1+4x4)n=(1+x2(2x2+1)2)n
and also to
(1+x^2)(1+4x^4)=1+x^2(2x^2+1)^2(1+x2)(1+4x4)=1+x2(2x2+1)2
So the solutions are
P_n(x) = (1+x^2)^nPn(x)=(1+x2)n for n=0,1,2,3,cdotsn=0,1,2,3,⋯