Find all values of Θ in the interval [0°, 360°)? tan²Θ - 2 tan Θ -1 = 0

2 Answers
Jun 4, 2018

arctan(1+2),arctan(1+2)+π,π+arctan(12),2π+arctan(1+2)

Explanation:

Substituting
t=tan(θ)
so we get

t22t1=0
t1,2=1±2

Jun 4, 2018

6750;15751;24750:33751

Explanation:

Solve this quadratic equation for tan t:
tan2t2tant1=0
D=d2=b24ac=4+4=8 --> d=±22
The 2 real roots are:
tant=b2a±d2a=22±222=1±2
a. tant=1+2=2.414
Calculator and unit circle give 2 solutions for t:
t=6750 and t=6750+180=24750
b. tant=12=0.414
Calculator and unit circle give:
t=2249 and t=22.49+180=15751
Note: t = - 22.49 is co-terminal to t = 337.51
The answers for (0, 360) are:
6750;15751;24750;33751