Find derivative? f(x) = (xe^x)^2f(x)=(xex)2

2 Answers
Jun 17, 2018

f^'(x)= 2 x e^(2 x)(x + 1)

Explanation:

Differentiation of product of two functions:

d/ (d x) (f(x)g(x)) = f^'(x) g(x) + f(x) g'(x)

f(x) = (x e^x)^2 or f(x) = x^2 * e^(2 x)

f^'(x)= x^2 * e^(2 x)* 2 + 2 x * e^(2 x)

:. f^'(x)= 2 x e^(2 x)(x + 1) [Ans]

Jun 17, 2018

f'(x)=2x(x+1)e^(2x)

Explanation:

Here,

f(x)=(xe^x)^2

Let,

y=u^2 ,where, color(red)(u=x*e^x)

:.(dy)/(du)=2u .......to(1) .

" Using "color(blue)"Product Rule" , we get

(du)/(dx)=x*d/(dx)(e^x)+e^x*d/(dx)(x)

=>(du)/(dx)=x*e^x+e^x*1...to(2)

Now ,"using "color(blue)"Chain Rule":

color(blue)((dy)/(dx)=(dy)/(du)*(du)/(dx)

(dy)/(dx)=(2color(red)(u))xx(xe^x+e^x)....toFrom (1) and (2)

:.(dy)/(dx)=2color(red)((xe^x))xx(xe^x+e^x)

(dy)/(dx)=2xe^x xx e^x(x+1)

(dy)/(dx)=2x(x+1)e^(2x)
...........................................................................................................

OR

f(x)=(xe^x)^2=x^2e^(2x)

=>f'(x)=x^2d/(dx)(e^(2x))+e^(2x)d/(dx)(x^2)

=>f'(x)=x^2e^(2x)*2+e^(2x)(2x)=2x^2e^(2x)+2xe^(2x)

Hence,

f'(x)=(2x^2+2x)e^(2x)=2x(x+1)e^(2x)