Here,
f(x)=(xe^x)^2
Let,
y=u^2 ,where, color(red)(u=x*e^x)
:.(dy)/(du)=2u .......to(1) .
" Using "color(blue)"Product Rule" , we get
(du)/(dx)=x*d/(dx)(e^x)+e^x*d/(dx)(x)
=>(du)/(dx)=x*e^x+e^x*1...to(2)
Now ,"using "color(blue)"Chain Rule":
color(blue)((dy)/(dx)=(dy)/(du)*(du)/(dx)
(dy)/(dx)=(2color(red)(u))xx(xe^x+e^x)....toFrom (1) and (2)
:.(dy)/(dx)=2color(red)((xe^x))xx(xe^x+e^x)
(dy)/(dx)=2xe^x xx e^x(x+1)
(dy)/(dx)=2x(x+1)e^(2x)
...........................................................................................................
OR
f(x)=(xe^x)^2=x^2e^(2x)
=>f'(x)=x^2d/(dx)(e^(2x))+e^(2x)d/(dx)(x^2)
=>f'(x)=x^2e^(2x)*2+e^(2x)(2x)=2x^2e^(2x)+2xe^(2x)
Hence,
f'(x)=(2x^2+2x)e^(2x)=2x(x+1)e^(2x)