Find #(dy)/(dx)# of #y=((x+1)^4(x-5)^3)/(x-3)^8#?
1 Answer
Sep 5, 2017
Explanation:
Use logarithmic differentiation.
#lny = ln(((x + 1)^4(x - 5)^3)/(x - 3)^8)#
#lny = ln(x +1)^4 + ln(x -5)^3 - ln(x - 3)^8#
#lny = 4ln(x + 1) + 3ln(x - 5) - 8 ln(x - 3)#
Now take the derivative of both sides.
#1/y(dy/dx) = 4/(x + 1) + 3/(x - 5) - 8/(x -3)#
#dy/dx= y(4/(x + 1) + 3/(x - 5) - 8/(x- 3))#
#dy/dx = (((x + 1)^4(x - 5)^3)/(x- 3)^8)(4/(x + 1) +3/(x- 5) - 8/(x- 3))#
Hopefully this helps!