Find integral of the following?

intcos^2x dxcos2xdx

2 Answers
Apr 21, 2018

the answer 1/2[x+1/2sin(2x)]+c12[x+12sin(2x)]+c

Explanation:

intcos^2(x)*dxcos2(x)dx

1/2int(1+cos(2x))*dx12(1+cos(2x))dx

1/2[x+1/2sin(2x)]+c12[x+12sin(2x)]+c

Note That:

cos^2(x)=1/2[1+cos(2x)]cos2(x)=12[1+cos(2x)]

sin^2(x)=1/2[1-cos(2x)]sin2(x)=12[1cos(2x)]

Apr 21, 2018

I=1/4(2x+sin2x)+cI=14(2x+sin2x)+c

Explanation:

Here,

I=intcos^2xdxI=cos2xdx

=int(1+cos2x)/2=1+cos2x2

=1/2[x+sin(2x)/2]+c=12[x+sin(2x)2]+c

=1/4(2x+sin2x)+c=14(2x+sin2x)+c