Note: #color(blue)((1)tan(A-B)=(tanA-tanB)/(1+tanAtanB)#
Let , #f(x)=sqrt tanx=>f(t)=sqrt tant#
We know that,
#f'(x)=lim_(t tox)(f(t)-f(x))/(t-x)#
#color(white)(f'(x))=lim_(t tox)(sqrt tant-sqrt tanx)/(t-x)#
#color(white)(f'(x))=lim_(t tox)(sqrt tant-sqrt tanx)/(t-x)xxcolor(green)((sqrt tant+sqrt tanx)/(sqrt tant+sqrt tanx)#
#color(white)(f'(x))=lim_(t tox)1/(sqrt tant+sqrt tanx)*lim_(t tox)(tant-tanx)/(t-x)#
#color(white)(f'(x))#=#1/(sqrt tanx+sqrttanx)lim_(t tox)(tant-tanx)/(t-x)*color(violet)((1+tant tanx)/(1+tant tanx)#
#color(white)(f'(x))#=#1/(2sqrt tanx)lim_(t tox)(color(blue)((tant-tanx)/(1+tant tanx)))/(t-x) (1+tant tanx)tocolor(blue)(Apply(1)#
#color(white)(f'(x))=1/(2sqrttanx)color(red)(lim_((t -x)to0)(tan(t-x)/(t-x)))lim_(t tox)(1+tant tanx)#
#f'(x)=1/(2sqrt tanx)(1)(1+tanxtanx)tocolor(red)([becauselim_(thetato0)(tantheta)/(theta)=1]#
#:.f'(x)=1/(2sqrttanx)(1+tan^2x)#
#=>f'(x)=(sec^2x)/(2sqrt tanx)#