Find the equation of the tangent to the curve x+xy+y=5 at x=5 help?

2 Answers
Jan 10, 2018

y=5616x

Explanation:

Start by finding the y-value:

5+5y+y=5

6y=0

y=0

Now we find the derivative using implicit differentiation.

1+y+x(dydx)+dydx=0

y+x(dydx)+dydx=1

x(dydx)+dydx=1y

dydx(x+1)=1y

dydx=1yx+1

dydx=y+1x+1

At (5,0), the derivative will have value

dydx=16

Now use point-slope form to find the equation:

yy1=m(xx1)

y0=16(x5)

y=16x+56

Hopefully this helps!

Jan 10, 2018

y=16x+56

Explanation:

Begin by finding the y coordinate at x=5:

5+5y+y=5

5y+y=0

6y=0

y=0

The point of tangency is (5,0)

Compute the first derivative of the curve:

1+y+xdydx+dydx=0

(x+1)dydx=(y+1)

dydx=y+1x+1

The slope, m, of the tangent line is the first derivative evaluated at the point (5,0):

m=0+15+1

m=16

Use the point-slope form for the equation of a line:

y=m(xx0)+y0

y=16(x5)+0

y=16x+56

Here is the a graph of the curve and the tangent line:

![www.desmos.com/calculator](useruploads.socratic.org)