Find the real solution(s) of sqrt(3-x)-sqrt(x+1) > 1/33xx+1>13 ?

1 Answer
Sep 4, 2016

x in [-1, 1 - sqrt(71)/18)x[1,17118)

Explanation:

First find values of xx where:

sqrt(3-x)-sqrt(x+1) = 1/33xx+1=13

Squaring both sides (which may introduce spurious solutions), we get:

(3-x)-2sqrt((3-x)(x+1))+(x+1) = 1/9(3x)2(3x)(x+1)+(x+1)=19

which simplifies to:

4-2 sqrt(3+2x-x^2) = 1/9423+2xx2=19

Multiply both sides by 99 to get:

36-18 sqrt(3+2x-x^2) = 136183+2xx2=1

Hence:

35 = 18 sqrt(3+2x-x^2)35=183+2xx2

Square both sides to get:

1225 = 324(3+2x-x^2) = 972+648x-324x^21225=324(3+2xx2)=972+648x324x2

Rearrange to get:

324x^2-648x+253 = 0324x2648x+253=0

Divide through by 324324 to get:

0 = x^2-2x+253/324 = (x-1)^2-71/3240=x22x+253324=(x1)271324

Hence x = 1+-sqrt(71)/18x=1±7118

Note that if x = 1+sqrt(71)/18x=1+7118 then 3-x < 23x<2, x+1 > 2x+1>2 and:

sqrt(3-x)-sqrt(x+1) < 03xx+1<0

If x = 1-sqrt(71)/18x=17118 then:

sqrt(3-x)-sqrt(x+1) = sqrt(2+sqrt(71)/18)-sqrt(2-sqrt(71)/18) > 03xx+1=2+711827118>0

and we find:

(sqrt(3-x)-sqrt(x+1))^2 = (sqrt(2+sqrt(71)/18)-sqrt(2-sqrt(71)/18))^2(3xx+1)2=2+7118271182

color(white)((sqrt(3-x)-sqrt(x+1))^2) = (2+sqrt(71)/18)-2sqrt((2+sqrt(71)/18)(2-sqrt(71)/18))+(2-sqrt(71)/18)(3xx+1)2=(2+7118)2 (2+7118)(27118)+(27118)

color(white)((sqrt(3-x)-sqrt(x+1))^2) = 4-2sqrt(4-71/324)(3xx+1)2=42471324

color(white)((sqrt(3-x)-sqrt(x+1))^2) = 4-2sqrt(1225/324)(3xx+1)2=421225324

color(white)((sqrt(3-x)-sqrt(x+1))^2) = 4-2*35/18(3xx+1)2=423518

color(white)((sqrt(3-x)-sqrt(x+1))^2) = 36/9-35/9(3xx+1)2=369359

color(white)((sqrt(3-x)-sqrt(x+1))^2) = 1/9(3xx+1)2=19

So this is a valid solution.

Now if -1 <= x < 1-sqrt(71)/181x<17118 then both square roots are defined and sqrt(3-x)-sqrt(x+1) > 1/33xx+1>13