Find the value of #int_0^1tan^-1((2x-1)/(1+x-x^2))dx#?

#int_0^1tan^-1((2x-1)/(1+x-x^2))dx#

1 Answer

See below.

Explanation:

) I used #tan(u+v)=(tanu+tanv)/(1-tanu*tanv)# identity for decomposing #arctan((2x-1)/(1+x-x^2))#.

2) I used #x=1-u# transform in #I# integral.

3) After summing 2 integrals, I found result.

#I#=#int_0^1 arctan[(2x-1)/(1+x-x^2)]*dx#

=#int_0^1 arctan((2x-1)/(1-x*(x+1)))*dx#

=#int_0^1 arctanx*dx#+#int_0^1 arctan(x-1)*dx#

After using #x=1-u# an #dx=-du# transforms,

#I#=#int_1^0 arctan(1-u)*(-du)#+#int_1^0 arctan(-u)*(-du)#

=#int_1^0 arctan(u-1)*du#+#int_1^0 arctanu*du#

=#-int_0^1 arctanu*du#-#int_0^1 arctan(u-1)*du#

=#-int_0^1 arctanx*dx#-#int_0^1 arctan(x-1)*dx#

After summing 2 integrals,

#2I=0#, hence #I=0#.