Find the value of 10tan1(2x11+xx2)dx?

10tan1(2x11+xx2)dx

1 Answer

See below.

Explanation:

) I used tan(u+v)=tanu+tanv1tanutanv identity for decomposing arctan(2x11+xx2).

2) I used x=1u transform in I integral.

3) After summing 2 integrals, I found result.

I=10arctan[2x11+xx2]dx

=10arctan(2x11x(x+1))dx

=10arctanxdx+10arctan(x1)dx

After using x=1u an dx=du transforms,

I=01arctan(1u)(du)+01arctan(u)(du)

=01arctan(u1)du+01arctanudu

=10arctanudu-10arctan(u1)du

=10arctanxdx-10arctan(x1)dx

After summing 2 integrals,

2I=0, hence I=0.