Finding (i)tanAtanBtanAtanB, (ii)tan(A+B)tan(A+B), (iii)sin((A+B)/2)sin(A+B2) using Addition Formulae?

Given cos(A+B) = 3/5cos(A+B)=35 and cos A cos B = 7/10cosAcosB=710, where A and B are both acute angles, find the value of
(i)tanAtanBtanAtanB,
(ii)tan(A+B)tan(A+B),
(iii)sin((A+B)/2)sin(A+B2).

Answers:
(i) 1/717
(ii) 3/434
(iii) sqrt(5)/555

2 Answers
May 2, 2018

Those are right except (ii) is inverted. tan(A+B)tan(A+B) should be 4/343 as sin(A+B)=4/5sin(A+B)=45 and cos(A+B)= 3/5cos(A+B)=35.

Explanation:

Fun. Given cos (A+B) = 3/5 quad and quad cos A cos B=7/10

Let's review the relevant identities.

cos(A+B)=cos A cos B - sin A sin B

sin A sin B = cos A cos B -cos(A+B) = 7/10 - 3/5 = 1/10

tanA tan B = {sin A sin B}/{cos A cos B} = {1/10}/{ 7/10 } = 1/7 quad choice (i)

cos ^2(A+B) + sin^2(A+B) = 1

sin(A+B)=\pm \sqrt{1-(3/5)^2} = \pm 4/5

A and B are acute, A+B<180^circ so a positive sine:

sin(A+B)=4/5

tan(A+B) = sin(A+B)/ cos(A+B) = {4/5}/{3/5} = 4/3 quad NONE OF THE ABOVE

One double angle formula is cos(2x)=1-2 sin ^2 x so

sin( ( A+B)/2 ) = \pm \sqrt{1/2 (1 - cos(A+B))}

The average of A and B is acute, so we choose the positive sign.

sin( ( A+B)/2 ) = + \sqrt{1/2 (1 - 3/5)) = 1/\sqrt{5} quad choice (iii)

One of three wrong, B-.

May 2, 2018

Kindly refer to the Explanation Section.

Explanation:

Given that cos(A+B)=3/5.

:. cosAcosB-sinAsinB=3/5.

:. 7/10-sinAsinB=3/5.

:. sinAsinB=7/10-3/5=1/10.

:. (sinAsinB)/(cosAcosB)=(1/10)/(7/10).

Hence, tanAtanB=1/7.............."[Ans."(i)].

Given that, 0 lt A lt pi/2, 0 lt B lt pi/2.

Adding, 0 lt (A+B) lt pi.

:. (A+B) in Q_1uuQ_2.

But, cos(A+B)=3/5 gt 0.

:. (A+B) in Q_1.

Now, sin^2(A+B)=1-cos^2(A+B)=1-(3/5)^2=16/25.

:. sin(A+B)=+-4/5;" but, because, "(A+B) in Q_1,

sin(A+B)=+4/5.

:.tan(A+B)=sin(A+B)/cos(A+B)=(4/5)/(3/5)=4/3..."[Ans."(ii)].

Finally, to find sin((A+B)/2)," let, "(A+B)/2=theta.

:. cos(A+B)=cos2theta=3/5.

"Now, "cos2theta=3/5 rArr cos(theta+theta)=3/5.

:. costhetacostheta-sinthetasintheta=3/5...[because,"Addition Formula]"

:. cos^2theta-sin^2theta=3/5, i.e.,

(1-sin^2theta)-sin^2theta=3/5, or,

1-2sin^2theta=3/5 rArr sin^2theta=1/2(1-3/5)=1/5.

:. sintheta=+-1/sqrt5

Since, (A+B)=2theta lies in Q_1," so does "theta=(A+B)/2.

:. sintheta=sin((A+B)/2)=+1/sqrt5=+sqrt5/5......"[Ans."(iii)].