For an isothermal process, S = __________?

1 Answer
Jan 4, 2018

It is as shown here for ideal gases...
https://socratic.org/questions/can-the-entropy-of-an-ideal-gas-change-during-an-isothermal-process#530118

For anything ever, one would need the particular equation of state or the values of alphaα or kappaκ.

DeltaS_T = int_(V_1)^(V_2) ((delS)/(delV))_TdV in general.

= int_(V_1)^(V_2) ((delP)/(delT))_VdV, for gases.

= int_(V_1)^(V_2) alpha/kappadV for condensed phases,

where alpha is the coefficient of thermal expansion, and kappa is the isothermal compressibility.


PROOF

Starting from the Maxwell relation for the Helmholtz free energy,

dA = -SdT - PdV

From this, we find that for any state function, the cross-derivatives are equal, and:

((delS)/(delV))_T = ((delP)/(delT))_V

Proceeding, we note that

alpha = 1/V((delV)/(delT))_P

kappa = -1/V((delV)/(delP))_T

Using the cyclic rule of partial derivatives:

((delV)/(delT))_P ((delP)/(delV))_T ((delT)/(delP))_V = -1

As a result, since ((delT)/(delP))_V = 1/(((delP)/(delT))_V):

-((delP)/(delT))_V = ((delV)/(delT))_P ((delP)/(delV))_T

From the definitions above, it follows that

color(blue)(((delP)/(delT))_V) = -((delV)/(delT))_P ((delP)/(delV))_T

= -((delV)/(delT))_P cdot [((delV)/(delP))_T]^(-1)

= 1/V((delV)/(delT))_P cdot [-1/V((delV)/(delP))_T]^(-1)

= color(blue)(alpha/kappa)