For an isothermal process, S = __________?
1 Answer
It is as shown here for ideal gases...
https://socratic.org/questions/can-the-entropy-of-an-ideal-gas-change-during-an-isothermal-process#530118
For anything ever, one would need the particular equation of state or the values of
DeltaS_T = int_(V_1)^(V_2) ((delS)/(delV))_TdV in general.
= int_(V_1)^(V_2) ((delP)/(delT))_VdV , for gases.
= int_(V_1)^(V_2) alpha/kappadV for condensed phases,where
alpha is the coefficient of thermal expansion, andkappa is the isothermal compressibility.
PROOF
Starting from the Maxwell relation for the Helmholtz free energy,
dA = -SdT - PdV
From this, we find that for any state function, the cross-derivatives are equal, and:
((delS)/(delV))_T = ((delP)/(delT))_V
Proceeding, we note that
alpha = 1/V((delV)/(delT))_P
kappa = -1/V((delV)/(delP))_T
Using the cyclic rule of partial derivatives:
((delV)/(delT))_P ((delP)/(delV))_T ((delT)/(delP))_V = -1
As a result, since
-((delP)/(delT))_V = ((delV)/(delT))_P ((delP)/(delV))_T
From the definitions above, it follows that
color(blue)(((delP)/(delT))_V) = -((delV)/(delT))_P ((delP)/(delV))_T
= -((delV)/(delT))_P cdot [((delV)/(delP))_T]^(-1)
= 1/V((delV)/(delT))_P cdot [-1/V((delV)/(delP))_T]^(-1)
= color(blue)(alpha/kappa)