For every pair of numbers a and b, the function f satisfies b2f(a)=a2f(b). If f(2) does not equal 0, find the value of f(5)f(1)f(2)?

2 Answers
Jun 2, 2017

6

Explanation:

Given:

b2f(a)=a2f(b)

Let k=f(2)40

Then, putting b=2 we find that for any a

4f(a)=a2f(2)=4ka2

Dividing both ends by 4, we find:

f(a)=ka2

So:

f(5)f(1)f(2)=k52k12k22=2514=6

Jun 2, 2017

6

Explanation:

Making b=λa

b2f(a)=a2f(b)f(λa)=λ2f(a) now making a=1 we have

f(λ)=λ2f(1) and then

f(5)f(1)f(2)=52f(1)f(1)22f(1)=6

NOTE: f(1)0 because otherwise f(2)=0