For f(t)= (lnt/t, t^2/e^t)f(t)=(lntt,t2et) what is the distance between f(2)f(2) and f(4)f(4)?
1 Answer
Apr 24, 2017
Explanation:
We have:
f(t)= (lnt/t, t^2/e^t)f(t)=(lntt,t2et)
Put
f(2)= (ln2/2, 4/e^2)f(2)=(ln22,4e2)
Put
f(4)= (ln4/4, 16/e^4)f(4)=(ln44,16e4)
\ \ \ \ \ \ \= (ln2^2/4, 16/e^4)
\ \ \ \ \ \ \= (2ln2/4, 16/e^4)
\ \ \ \ \ \ \= (ln2/2, 16/e^4)
By Pythagoras:
d^2 = Delta x^2 + Delta y^2
\ \ \ = (0)^2 + (4/e^2-16/e^4)^2
:. d = 4/e^2-16/e^4
\ \ \ \ \ \ \ = (4(e^2-4))/e^4