For #f(t)= (lnt/t, t^2/e^t)# what is the distance between #f(2)# and #f(4)#?
1 Answer
Apr 24, 2017
Explanation:
We have:
# f(t)= (lnt/t, t^2/e^t)#
Put
# f(2)= (ln2/2, 4/e^2)#
Put
# f(4)= (ln4/4, 16/e^4)#
# \ \ \ \ \ \ \= (ln2^2/4, 16/e^4)#
# \ \ \ \ \ \ \= (2ln2/4, 16/e^4)#
# \ \ \ \ \ \ \= (ln2/2, 16/e^4)#
By Pythagoras:
# d^2 = Delta x^2 + Delta y^2 #
# \ \ \ = (0)^2 + (4/e^2-16/e^4)^2 #
# :. d = 4/e^2-16/e^4 #
# \ \ \ \ \ \ \ = (4(e^2-4))/e^4 #