For n > 1, I have designated the value of log_n(pi+1/log_n(pi+1/log_n(pi+...))) as the function pin(n). Inversely, given pin (8)=0.72544666, how do you approximate pi?
1 Answer
Aug 3, 2016
pi = 8^(0.72544666)-1/(0.72544666) ~~ 3.1415928
Explanation:
Suppose:
t = log_n(pi+1/(log_n(pi+1/(log_n(pi+...)))))=log_n(pi+1/t)
Then:
n^t = pi+1/t
So:
pi = n^t-1/t
In our example, we are told that
So:
pi = 8^(0.72544666)-1/(0.72544666)
~~ 4.5200539-1.3784611 = 3.1415928