For the function g(x)=x^3+x^2-6xg(x)=x3+x26x, how do you find at least one value of x for which g(x)=0?

1 Answer
May 11, 2017

{x : g(x)=0}={-3,0,2}.{x:g(x)=0}={3,0,2}.

Explanation:

g(x)=0 rArr x^3+x^2-6x=0.g(x)=0x3+x26x=0.

rArr x(x^2+x-6)=0.x(x2+x6)=0.

rArr x{ul(x^2+3x)-ul(2x-6)}=0.........[3xx2=6, 3-2=1].

rArr x{x(x+3)-2(x+3)}=0.

rArr x(x+3)(x-2)=0.

Hence, the Desired Set ={x : g(x)=0}={-3,0,2}.