Given that two different values of #theta # i.e #theta _1and theta_2# satisfy the equation
#sin(theta+phi)=1/2sin2phi#
So we have
#sin(theta_1+phi)=1/2sin2phi#
and
#sin(theta_2+phi)=1/2sin2phi#
combining these two we get
#sin(theta_1+phi)=sin(theta_2+phi)#
#=>sintheta_1cosphi+costheta_1sinphi=sintheta_2cosphi+costheta_2sinphi#
#=>sintheta_1cosphi-sintheta_2cosphi=costheta_2sinphi-costheta_1sinphi#
#=>(sintheta_1-sintheta_2)cosphi=(costheta_2-costheta_1)sinphi#
#=>(sintheta_1-sintheta_2)/(costheta_2-costheta_1)=sinphi/cosphi#
#=>(2cos((theta_1+theta_2)/2)sin((theta_1-theta_2)/2))/(2sin((theta_1-theta_2)/2)sin((theta_1+theta_2)/2))=sinphi/cosphi#
#=>cot((theta_1+theta_2)/2)=tanphi=cot((kpi)/2-phi)#,where # k=1and 3#. As #theta _1and theta_2# are between #0 and 2pi#
So
#(theta_1+theta_2)/2=((kpi)/2-phi)#
Now
#(sintheta_1+sintheta_2)/(costheta_1+costheta_2)#
#=(2sin((theta_1+theta_2)/2)cos((theta_1-theta_2)/2))/(2cos((theta_1-theta_2)/2)cos((theta_1+theta_2)/2))#
#=tan((theta_1+theta_2)/2)#
#=tan((kpi)/2-phi)=cotphi#