"Reminder"
(uv)'=u'v+uv'
Calculate the first and second derivatives
f(x)=(2x^2-4x)e^x=2(x^2-2x)e^x
f'(x)=2*(2x-2)e^x+2(x^2-2x)e^x=2(x^2-2)e^x
f''(x)=2*(2x)e^x+2(x^2-2)e^x=2(x^2+2x-2)e^x
The inflection points are when f''(x)=0
x^2+2x-2=0
Solving this quadratic equation for x
x=(-2+-sqrt(2^2-4*1*(-2)))/(2)=(-2+-sqrt(12))/(2)
=(-2+-2sqrt(3))/2
=-1+-sqrt3
The roots are
x_1=-1-sqrt3
x_2=-1+sqrt3
We can build the variation chart
color(white)(aaa)color(white)(aaa)"Interval"color(white)(aaa)(-oo, x_1)color(white)(aaa)(x_1, x_2)color(white)(aaa)(x_2, +oo)
color(white)(aaa)color(white)(aaa)"Sign f''(x)"color(white)(aaaaa)+color(white)(aaaaaaaa)-color(white)(aaaaaaa)+
color(white)(aaa)color(white)(aaa)" f(x)"color(white)(aaaaaaaaa)uucolor(white)(aaaaaaaa)nncolor(white)(aaaaaaa)uu
graph{(2x^2-4x)e^x [-17.35, 14.68, -7.95, 8.07]}