For what values of x is f(x)=2x^4+4x^3+2x^2-2 concave or convex?

1 Answer

See solution below

Explanation:

Given function:

f(x)=2x^4+4x^3+2x^2-2

f'(x)=8x^3+12x^2+4x

f''(x)=24x^2+24x+4

The function will be concave when f''(x)\le 0

\therefore 24x^2+24x+4\le 0

6x^2+6x+1\le 0

(x+\frac{3+\sqrt3}{6})(x+\frac{3-\sqrt3}{6})\le 0

x\in(\frac{-3-\sqrt3}{6}, \frac{-3+\sqrt3}{6})

Hence, the given function is concave in (\frac{-3-\sqrt3}{6}, \frac{-3+\sqrt3}{6})

the given function is convex in (-\infty, \frac{-3-\sqrt3}{6})\cup (\frac{-3+\sqrt3}{6}, \infty)