For what values of x is f(x)=3x^3+2x^2-x+9 concave or convex?

1 Answer
Feb 20, 2018

"graph of" \ f(x) \ "is concave up on the interval:" \qquad \quad ( - 2 / 9, + infty )

"graph of" \ f(x) \ "is concave down on the interval:" \ ( - infty, - 2 / 9 ).

Explanation:

"First recall the fundamental results about the concavity of the"
"graph of a function" \ f(x) ":"

\qquad \quad \ f''(x) > 0 \quad => \quad "the graph of" \ \ f(x) \ \ "is concave up;"

\qquad \quad \ f''(x) < 0 \quad => \quad "the graph of" \ \ f(x) \ \ "is concave down."

"[I apologize -- with regard to concavity of the graph of a"
"function, I'm not sure I know the language: concave/convex."
"I am used to the language: (concave up)/(concave down)."
"I hope what I provide here can help you !!]"

"So, to answer questions about the concavity of the graph of a"
"function, we need to find its second derivative first."

"The function we are given is:"

\qquad \qquad \qquad \qquad \qquad \qquad \qquad f(x) \ = \ 3 x^3 + 2 x^2 - x + 9.

\qquad \qquad :. \qquad \qquad \qquad \ f'(x) \ = \ 9 x^2 + 4 x - 1.

\qquad \qquad :. \qquad \qquad \quad \ f''(x) \ = \ 18 x+ 4. \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad (1)

"So, we want to find where:"

\qquad \qquad \qquad \qquad \qquad \qquad \ \ f''(x) > 0 \qquad "and" \qquad f''(x) < 0.

"So, using eqn. (1), we must find where:"

\qquad \qquad \qquad \qquad \qquad \ \ \ 18 x+ 4 > 0 \qquad "and" \qquad 18 x+ 4 < 0.

"So, we solve these inequalities. One way to do this is to do it"
"directly, as below:"

\qquad \qquad \qquad \qquad \qquad \ \ 18 x+ 4 > 0 \qquad "and" \qquad 18 x+ 4 < 0

\qquad \qquad \qquad \qquad \qquad \qquad 18 x > -4 \qquad "and" \qquad 18 x < -4.

"As" \ \ 18 \ \ "is positive, we can divide through both sides of these"
"inequalities by" \ 18, "without changing the order of the"
"inequality sign:"

\qquad \qquad \qquad \qquad \qquad \quad x > - 4 / 18 \qquad "and" \qquad x < - 4 / 18

\qquad \qquad \qquad \qquad \qquad \quad \quad x > - 2 / 9 \qquad "and" \qquad x < - 2 / 9.

"Thus, we have:"

x > - 2 / 9 \ \ => \ \ f''(x) > 0 \ => \ "graph of" \ f(x) \ "is concave up;"

x < - 2 / 9 \ \ => \ \ f''(x) > 0 \ => \ "graph of" \ f(x) \ "is concave down."

"Summarizing:"

\qquad \qquad \qquad \quad "graph of" \ f(x) \ "is concave up:" \qquad \ x > - 2 / 9

\qquad \qquad \qquad \quad "graph of" \ f(x) \ "is concave down:" \qquad \ x < - 2 / 9

"In interval notation:"

"graph of" \ f(x) \ "is concave up on the interval:" \qquad \quad ( - 2 / 9, + infty )

"graph of" \ f(x) \ "is concave down on the interval:" \ ( - infty, - 2 / 9 ).

"This is the answer to our question."