"Reminder"
(u/v)'=(u'v-uv')/v^2
(uv)'=u'v+uv'
Calculate the first and second derivatives
f(x)=e^x/(5x^2)+1
f'(x)=(e^x*(5x^2)-e^x*(10x))/(25x^4)=((x-2)e^x)/(5x^3)
(x-2)'=1
((x-2)e^x)'=e^x+(x-2)e^x=e^x(x-1)
f''(x)=(e^x(x-1)(5x^3)-(x-2)e^x(15x^2))/(25x^6)
=(e^x(x^2-x-3x+6))/(5x^4)
=(e^x(x^2-4x+6))/(5x^4)
The inflection points are when f''(x)=0
The discriminant of the quadratic equation x^2-4x+6=0
is
Delta=b^2-4ac=(-4)^2-4*(1)*(6)=16-24=-8
As the discriminant is negative, the second derivative
f''(x)>0, AA x in RR -{0}
The variation chart is as follows
color(white)(aaaa)"Interval"color(white)(aaaa)(-oo,0)color(white)(aaaa)(0, +oo)
color(white)(aaaa)"Sign f''(x)"color(white)(aaaaaa)+color(white)(aaaaaaaa)+
color(white)(aaaaaaa)"f(x)"color(white)(aaaaaaaa)uucolor(white)(aaaaaaaa)uu
graph{e^x/(5x^2)+1 [-9.71, 10.29, -1.96, 8.04]}