For what values of x is f(x)= e^x/(5x^2) +1 concave or convex?

1 Answer
Jan 24, 2018

The function is convex for x in (-oo,0) uu(0, +oo)

Explanation:

"Reminder"

(u/v)'=(u'v-uv')/v^2

(uv)'=u'v+uv'

Calculate the first and second derivatives

f(x)=e^x/(5x^2)+1

f'(x)=(e^x*(5x^2)-e^x*(10x))/(25x^4)=((x-2)e^x)/(5x^3)

(x-2)'=1

((x-2)e^x)'=e^x+(x-2)e^x=e^x(x-1)

f''(x)=(e^x(x-1)(5x^3)-(x-2)e^x(15x^2))/(25x^6)

=(e^x(x^2-x-3x+6))/(5x^4)

=(e^x(x^2-4x+6))/(5x^4)

The inflection points are when f''(x)=0

The discriminant of the quadratic equation x^2-4x+6=0

is

Delta=b^2-4ac=(-4)^2-4*(1)*(6)=16-24=-8

As the discriminant is negative, the second derivative

f''(x)>0, AA x in RR -{0}

The variation chart is as follows

color(white)(aaaa)"Interval"color(white)(aaaa)(-oo,0)color(white)(aaaa)(0, +oo)

color(white)(aaaa)"Sign f''(x)"color(white)(aaaaaa)+color(white)(aaaaaaaa)+

color(white)(aaaaaaa)"f(x)"color(white)(aaaaaaaa)uucolor(white)(aaaaaaaa)uu

graph{e^x/(5x^2)+1 [-9.71, 10.29, -1.96, 8.04]}