For what values of x is f(x)=(x^2−x)e^xf(x)=(x2x)ex concave or convex?

1 Answer
Dec 31, 2015

The function is convex on (-oo,-3)uu(0,oo)(,3)(0,).
The function is concave on (-3,0)(3,0).

Explanation:

First, find the second derivative.

First Derivative

Use product rule.

f'(x)=(2x-1)e^x+(x^2-x)e^x

=>e^x(x^2+x-1)

Second Derivative

Use product rule again.

f''(x)=e^x(x^2+x-1)+e^x(2x+1)

=>e^x(x^2+3x)=xe^x(x+3)

Create a sign chart to find when f''(x) is positive (convex) and negative (concave). To find the important values on the chart, set f''(x)=0.

xe^x(x+3)=0

x=-3,0

color(white)(ssssssssss)-3color(white)(ssssssssssssss)0
larr-------------rarr
color(white)(sssss)+color(white)(ssssssssssss)-color(white)(ssssssssssss)+

The function is convex on (-oo,-3)uu(0,oo).
The function is concave on (-3,0).

graph{e^x(x^2-x) [-10, 10, -5, 5]}