For what values of x is f(x)=-x^2+xe^xf(x)=x2+xex concave or convex?

1 Answer
Mar 1, 2018

The function is concave up or convex for x>0x>0 and concave for x<0x<0

Explanation:

f(x)=-x^2+xe^xf(x)=x2+xex
f'(x)=-2x+e^x+xe^x
f''(x)=-2+2e^x+xe^x
f''(x)=0
0=-2+e^x(2+x)|+2
2=e^x(2+x)
if x=0
e^0=1
(2+0)=2
2*1=2
2=e^0(2+0)
f''(1)=2*e-2+e>0
The function is concave up or convex for x>0 and concave for x<0