For what values of x is f(x)=x^4-x^3+7x^2-2f(x)=x4x3+7x22 concave or convex?

1 Answer
Mar 3, 2018

Concave for all real numbers

Explanation:

Find "f''(x)"f''(x)
When "f''(x) ≥ 0"f''(x) ≥ 0, f(x) is Concave upward
When "f''(x) ≤ 0"f''(x) ≤ 0, f(x) is Concave Downward

f(x)=x^4−x^3+7x^2−2f(x)=x4x3+7x22
f'(x) = 4x^3 - 3x^2 + 14x
"f''"(x)= 12x^2 - 6x + 14

"f''"(x) ≥ 0
12x^2 - 6x + 14 ≥ 0
This is true for all real numbers => f(x) is concave upward for R.