For what value of x is (3x^2)/(x+3)>(4x)/(x-2)?

1 Answer
May 12, 2018

The answer
x<[5-sqrt(61)]/(3)
x<[5+sqrt(61)]/(3)
x<0

Explanation:

show below

(3x^2)/(x+3)>(4x)/(x-2)

4x^2+12x>3x^3-6x^2

3x^3-10x^2-12x<0

x[3x^2-10x-12]<0

x<0

now we will solve [3x^2-10x-12]=0

x=ax^2+bx+c

a=3, b=-10 and c=-12

x=[-b+-sqrt(b^2-4ac)]/(2a)

x=[10+-sqrt(100+144)]/(6)

x=[5+-sqrt(61)]/(3)

x<[5-sqrt(61)]/(3)

x<[5+sqrt(61)]/(3)