Given a = 1+sqrt2a=1+2 find lim_(x->0)((a+x)^a/a^(a+x))^(1/x) Try not to use the L'Hopital method.?

1 Answer
Feb 9, 2018

\

"Answer is:" \qquad e/{ 1 + \sqrt{2} }.

Explanation:

\

"We compute as follows:"

lim_{x rarr 0} ( ( a + x )^a / a^{a +x} )^{1/x} \ = \ lim_{x rarr 0} ( 1/ a^x )^{1/x} \cdot ( ( a + x )^a / a^{a} )^{1/x}

\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad = \ lim_{x rarr 0} 1/ a \cdot ( ( { a + x }/a )^a)^{1/x}

\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad = \ lim_{x rarr 0} 1/ a \cdot ( ( 1 + x/a )^a)^{1/x}

\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad = \ lim_{x rarr 0} 1/ a \cdot ( 1 + x/a )^{a/x}

\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad = 1/ a \cdot e

\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad = e / a.

\

"Thus:"

\qquad \qquad \qquad \qquad \qquad \qquad \quad \ lim_{x rarr 0} ( ( a + x )^a / a^{a +x} )^{1/x} \ = \ e / a.

\

"In the case of this problem:" \quad a = 1 + \sqrt{2}.

\qquad \qquad \qquad \qquad \qquad :. \qquad \quad \ lim_{x rarr 0} ( ( a + x )^a / a^{a +x} )^{1/x} \ = \ e / { 1 + \sqrt{2} }.