Given #costheta=-(2sqrt10)/11# and #pi<theta<(3pi)/2#, how do you find #tan2theta#?

1 Answer
Jun 27, 2016

#(8sqrt10)/41#

Explanation:

Use the 2 trig identities:
#sin^2 a = 1 - cos^2 a#
#tan2a = (2tan a)/(1 - tan^2 a)#
First fin sin t.
#sin^2 t = 1 - cos^2 t = 1 - 40/121 = 81/121 #
#sin t = -9/11# (since t is in Quadrant III)
#tan t = (-9/11)(-11/2sqrt10) = 9/(2sqrt10) = (9sqrt10)/20#
#tan 2t = ((18sqrt10)/20)/(1 - 810/400) = #
#= (2sqrt10/10)(-400/410) = (8sqrt10)/41#