As #cotx=5#, #tanx=1/5#
but as #tanx=(2tan(x/2))/(1-tan^2(x/2))#
#(2tan(x/2))/(1-tan^2(x/2))=1/5#
or #10tan(x/2)=1-tan^2(x/2)#
or #tan^2(x/2)+10tan(x/2)-1=0#
and using quadratic formula
#tan(x/2)=(-10+-sqrt(10^2-4xx1xx(-1)))/2#
= #(-10+-sqrt104)/2=-5+-sqrt26#
i.e. #tan(x/2)=-5+sqrt26# or #-5-sqrt26#
Hence #sec(x/2)=sqrt(1+(-5+sqrt26)^2)#
= #sqrt(1+25+26-10sqrt26)=sqrt(52-10sqrt26)# or
#sec(x/2)=sqrt(1+(-5-sqrt26)^2)#
= #sqrt(1+25+26+10sqrt26)=sqrt(52+10sqrt26)#
and #cos(x/2)=1/sqrt(52-10sqrt26)# or #1/sqrt(52+10sqrt26)#
and #sin(x/2)=(-5+sqrt26)/sqrt(52-10sqrt26)# or #(-5-sqrt26)/sqrt(52+10sqrt26)#